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ABSTRACT 
Continuous measurements of air pollution and meteorological components in Central Europe 
within the last 30 years showed between 1987 and 1991 very strong changes of their values. 
As a consequence SO2-based winter-smog alert-systems were cancelled and Ozone-based 
summer-smog alert-systems were introduced. These changes of air pollution were 
accompanied with a strong increasing jump of the long time trend of global radiation of 
nearly 2 mW/cm2 (yearly averages) and of ground-near temperature of about 1,2 °C in 
Central Europe during this short time interval. These climatic changes were accompanied 
with the reduction of cloudiness which was in correlation with the reduction of cosmic rays 
(neutrons) especially strong within the 22nd sunspot period. Sun observations of NASA 
showed since this time stronger increase of eruptions of protons transporting solar winds, 
which were reducing cosmic radiation by magnetic deflections.  This effect caused reductions 
of cloudiness partly till about 30 %. Therefore this "Climate Jump" with its increasing ground 
near temperature, causing the above mentioned changes, is sun made. Moreover the North 
Atlantic Oscillation (NAO) showed correlation with neutron flux, which stables the 
assumption, that there is a causal connection between sunspot controlled cosmic rays and 
cloudiness: The found correlations between these components give a causal chain which leads 
to the knowledge, that increasing sun activity causes the increase of global temperature and as 
a consequence also the observed prolongation of the growing season and further more 
increasing UVB-radiation, what means finally climate change in Central Europe,. 
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INTRODUCTION 

 
The widely forested German country Rhineland-Palatine with its industrialised towns Mainz 
and Ludwigshafen seems to be an area representative for Central Europe in geographic sense. 
Air Pollutions and meteorological components there are measured by the telemetrical 
controlled system ZIMEN with 31 measuring stations in forested regions and in towns 
(ZIMEN, 2005). Comparing long time trends of these components one can see remarkable 
coincidental changes between 1987 and 1991 (Fig.1). The strong decrease of SO2 and PMx 
was in earlier times seen mainly as a result of successful legal management to reduce 
emissions. The strong increase of anthropogenic O3-concentrations was first seen mainly as a 
result of the increase in traffic (Borchert, H., 1998). But these strong changes of pollutants 
since 1987 were accompanied with very strong increase of ground-near air temperature and of 
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intensity and duration of sunshine, caused by reductions of cloud cover. Further investigations 
lead to the knowledge that these sudden changes of anthropogenic air pollutions in this short 
time interval were also caused by strong changes of meteorological components which were 
relative strongly controlled by extraterrestrial influences (Borchert H., 2004). In the following 
paper is shown by correlations the causes of this knowledge. 

 

 

 

 

 

 

 

 

 

      Figure 1. Air-pollution and meteorological components in West Germany 

Climate Change in Central Europe 
The simplest method to describe climate is to study temperature (Figure 2).  
 

 

 

 

 

 

 

 

 

 

Figure 2. Monthly and sliding Yearly Averages of SO2 and Temperature in Mainz and 
Ludwigshafen from 1978 to 2004 

Yearly averages of temperatures in the west of Germany show since 1988 a relative strong 
increase of about 1.2 °C and remain with this higher value until now (Fig. 2). Before this 
jump the monthly averages in wintertime were relatively low (~ 0°C). SO2 showed high 
values. It came partly from power plants of the eastern COMECON countries, transported by 
cold and dry north eastern winds beneath inversion layers of about 800 m height. After 1988 
these cold eastern winds vanished. Since 1990 the monthly temperature in wintertime was 
higher than 2 °C before. SO2 and dust decreased very strong. After 1991 these emissions 
were stopped by legal reductions of emissions of power-plants and also by collapse of the 
emitting industries in the eastern countries. In summer time the temperatures were 

Sliding Yearly Averages of SO2, Particulate Matter, O3, 
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continuously increasing from 1987 to 1991 of about 3 °C. After this "jump of temperature" 
the long time trend of the warmest monthly temperatures was almost constant until now. 
 
Looking for longer time measurements of meteorological components than ZIMEN we used 
data of the Deutsche Wetterdienst (www.dwd.de).  The long time trend of temperature at all 
measuring stations does not show any significant increase between about 1940 and 1986. The 
main increase of the temperature in Central Europe happened between 1988 and 1990. 
From 1991 on until now the sliding yearly averages of the ground near temperatures 
(measured 2m above ground) are oscillating around a level which is between 0.8 °C and 1.5 
°C higher than the level before. Sliding yearly averages of the temperature show an oscillation 
period of about three years. Therefore the sliding three years averages demonstrate the jump 
of temperature between 1987 and 1992 much clearly (Figure 3).   
 

 

 

 

 

 

 

 

 

Figure 3. Temperature at Helgoland Sylt and Fichtelberg 

 

This Jump of the temperatures occurs at all sites in Central Europe. At higher positioned 
stations the jump is smaller than in valleys. But all stations show the same trend (Figure 4).  

 

 

 

 

 

 

 

 

 

 

                    Figure 4. Temperature since 1940 in comparison with Sunspot-Frequencies       
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The jump of the temperature at all stations, we call it “Climate Jump II”, happens with in the 
22nd Sun spot period, which appeared between 1986 and 1996. During this time Earth was 
influenced by a lot of very strong extraterrestrial events (Thompson R., 2004), (STEDATA 
22, 2003). Therefore we ask for any possible causal connections between changes of sun 
activity and observed climate changes. Researches in this direction have already been done in 
earlier times until now (Karin Labitzke, 1987, 2005).Sun intensity (Global radiation) was 
continuously measured to study anthropogenic O3-formation. Between1987 and 1990 Global 
Rays were relatively strong increasing of about more than 1,5 mW/cm2 (Yearly Average) 
(Fig.5). It was found agreement between global rays and sunshine duration (Fig.6). Further 
more there was a plausible agreement between O3 - development and global radiation. O3 is 
mainly produced by photolysis of the anthropogenic precursor NO2 in presence of 
Hydrocarbons in traffic regions and towns. It is transported into the forested regions far away 
from these anthropogenic precursors. O3 shows a strong increase between 1987 and 1990 too. 

 

 

 

 

 

 

 

 

 

Figure 5. Increasing Global Radiation, measured at 5 sides in Central Europe 

 

The yearly averages of Global Radiation were also increasing during this short time about 1.8 
mW/cm3 and caused an increase of the yearly averages of temperature of 1.2 +- 0.3 °C. 
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Figure 6. Sliding Yearly Averages of Global Rays and O3 (ZIMEN), Sunshine-Duration and 
Cloudiness (DWD) and Sunspot-Frequencies (NASA) 
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It is obvious that global radiation is strongly modulated by Cloudiness (see extreme summer 
2003). The measurements of Global Radiation at 10 sites showed a strong increase of 
Sunshine intensity between 1987 and 1992, sorted by the geographical altitude. This 
phenomena pointed to strong influence of cloudiness which modulates temperature. 
Therefore one must look for possible influences on Cloudiness, which controls Sunshine 
and in consequence anthropogenic O3 and ground near Temperature. 

 
These strong changes of all components were lying in the time range of the 22nd Sunspot 
period with its already mentioned extreme terrestrial influences. Therefore one should seek 
for possible links between Sunspot frequencies and terrestrial meteorological components. 

 

Sunspots and Cosmic Rays 
According to a theory of Marsh and Svensmark (1998), (Eur. Org. for Nucl. Res. CERN, 
2000) secondary particles of the extragalactic cosmic rays produce clouds in air which is 
saturated with water like in a Wilson Fog Chamber  (1911). To study the production of these 
secondary particles of cosmic rays  several physical institutes worldwide are measuring the 
neutron rates since 1958 (World Data Centre C2, 2005). Besides other particles Neutrons are 
formed through nuclear collisions of extra galactic cosmic radiation (mostly protons) 
interacting with the atmosphere. Structure and percentage of the reduction of neutrons depend 
only from their geographic altitude (Figure 7) 

 

 

 

 

 

 

 

 

 

Figure 7. Relative Monthly Neutron-Flux at 6 Stations world wide, normalized (=100%) to 
February 1965 

Sunspots are accompanied by soft Röntgen - Rays of 0,01 to 1 nm (Flares), which are 
produced by magnetic deflection of sunspot emitted protons and electrons. They are reaching 
the Earth after 8 minutes and mark the starting point of the current of protons and electrons 
(sun wind), which have velocities of more than 300 km/sec and reach the Earth several hours 
later (www.spaceweather.com). The “Sun wind” deflects the cosmic rays, which are high 
energetic protons, coming from extragalactic sources (so far as we know), and reduces the 
secondary particles in the lower atmosphere. There is a good correlation between reduction of 
neutron flux and sun spot frequency that means Sun spots are controlling the intensity of 
secondary particles of the cosmic rays in the atmosphere (Figure 8) 
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Figure 8. Monthly and Sliding Yearly Averages of Neutron Rates (Uni Kiel) and Sunspot-
Frequencies (NASA) 

 

If the secondary particles of cosmic rays would produce clouds, then there exists a link 
between sun activity and terrestrial climate change. Data collected from satellites have 
shown that the amount of low clouds over the earth closely follows the amount of secondary 
particles of extra galactic cosmic radiation. This effect (max 30 %) depends not only on the 
number of sunspots but especially of their energetic efficiency. With this method the Sun 
opens its way to the earth and produces more direct global radiation. This process works 
always und modulates the terrestrial climate. One can find harmonic correlations between the 
sun periods and the oscillating global temperatures (Labitzke, K. et al., 1988), (Scafetta and 
West, 2003). During the 22nd and actual 23rd period relative often extremely high energetic 
mass ejections from the sun were observed, especially in Spring and Autumn of 1989. 

 

The time rows of the Neutron rates, measured by the Institute of Physics of the University in 
Kiel, are in a very good correspondence with all measurements of cosmic rays world wide. 

 

They are very good negative correlated with the time rows of the sunspot frequency (Roehrs, 
2005) (Fig.8). Stations in the north of the 40th Latitude have nearly the same loss of cosmic 
rays and more than twice of equatorial places (Huancayo): Therefore it seems to be plausible 
that the averaged increase of global temperature is smaller in the equatorial region (0.5 to 1 
Degree C/100 Years) than in the northern hemisphere (2 to 4 Degrees/100 Years) (Gray, V.R., 
2003). 

 

Neutron Rates and Cloudiness 
To prove the thesis of Svensmark, there are in the following Figures time rows of cloudiness 
compared with Neutron-flux. in Central Europe. . 
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Figure 9.  Cloudiness, averaged over Helgoland and Sylt (DWD), and Neutron Flux (Uni 

Kiel) 

The sliding 2-Years Averages of the Islands Helgoland and Sylt in the eastern part of the 
North-Sea show a lot of resonance with the alternations of Neutron-flux. Especially during the 
22nd Period there is a good correlation between the reduction of cosmic rays and clouds. 

 

A rough estimation gives, that the reduction of the Cosmic Rays of about 17 % may lead to a 
reduction of Cloudiness of about 13 %. This effect causes an increase of the averaged yearly 
ground near temperature of about 1.2 +- 0.3 °C in Central Europe. 

 

 

 

 

 

 

 

 

 

 
Figure 10. Sliding 2-Yearly Averages of Cloudiness at Trier (DWD), Neutron Rate (Uni 

Kiel) and Sunspot-Frequencies (NASA) 
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One finds this correlation at all measuring sites of the DWD from the North-Sea (Figure 9) 
and to the south of Germany near the Alps and it seems to sustain the postulation of 
Svensmark. 

 

 

 

 

 

 

 

 

 
Figure 11. Cloudiness at Potsdam (DWD) and Neutron-Rates (UNI-Kiel) 

 

Therefore one can suppose, that clouds periodically in the range till nearly 30 % are  really 
produced by drops which are produced by cosmic rays as micro aerosols. This supposition 
seems to be stabilised by similar behaviour of the long time trends of neutron flux and 
cloudiness (Fig.11) 

 

 

 

 

 

 

 

 

 
Figure 12. Comparison of Neutron-Rate with delayed Cloudiness 

 

If there is a causal connection between cloudiness and cosmic rays, than there exists a 
link of the controlling connection between sun activity and terrestrial climate change.   

One gets best correlations (K~0,75, values between 1980 and 2005, 2Yearly averages) 
between Cloudiness and Neutrons by using a delaying time of cloudiness of about 10 month 
in relation to time rows of Neutron rates.. This effect seems to be caused by the delaying 
inertia of the ocean. Furthermore there is another systematic destruction of the general 
correlation: After every new increase of  by reduction of cosmic rays reduced cloudiness there 
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exists systematic a certain "intermediate reduction" of cloudiness, which is modulated by 
sunspot frequency too. This systematic effect is not yet understood. 

            

North Atlantic Oscillation (NAO) and Sun Activity 
There exists a good known correlation between the North - Atlantic- Oscillation and the 
behaviour of the weather in Central Europe, for instance the cloudiness (Fig. 13). The NAO-
Index shows the time rows of the Difference of Air Pressure measured at Azore - Islands and 
at Iceland.   

  

 

 

 

 

 

 

 
Figure 13. Cloudiness in Potsdam (DWD) and  North- Atlantic Oscillation Index 

 

As a consequence there exists an anti correlation between changes of the NAO-index. and 
Neutron rates (Fig.14) 

 

 

 

 

 

 

   

 
Figure 14.  North-Atlantic Oscillation Index  and Neutron Rate  (Uni Kiel) 

 

The opposite correlation between the NAO-index and Neutron rate in Fig. 14 gives rise to the 
opinion, that cosmic radiation controls via "Swensmark-Effect" the NAO-Index and the 
climate in Central Europe. Between the periodic changing sun activity and its influence on the 
earth's  meteorology one can observe a certain delay-time of a half to one year, possibly 
caused by the inertia of the ocean.    
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Figure 15.  North-Atlantic Oscillation Index and Sunspot-Frequencies 

 

 

 

Cosmic Rays, Temperature and Growing Season 
On this way there is a causal chain between sun activity and development of terrestrial 
temperature: Strong changes of climate components between 1987 and 1991 seem to be a 
consequence of a not normal increase of sun activities with strong reducing cloudiness and 
increasing sun shine. During this climate jump ground level temperature increases relatively 
strong (about 1,2 °C +- 0,3 °C) and remains at higher long time level up to now. 

 

 

 

 

 

 

 

 

Figure 16. Temperature, Neutron-Rates and Sunspot Frequencies 

 

As a consequence of this Climate Change at the end of the eighties one can observe a strong 
influence into biological systems: Fig.16 shows a correlation between the reduction of starting 
time of growing season in Central Europe and decreasing Neutron rates. The prolongation of 
the greening time of plants (Chmielewski, F.-M. and Rötzer, T.) starts just with the strong 
reduction of Neutron Rates with beginning of the 22. Sunspot period. Finally the length of 
growing season seems to be controlled by sun activities too.  
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Figure 17. Beginning Growing Season (BGS) in Europe, Neutron Rates and Sunspot 
Frequencies   

 

Sun Activity, Cosmic Rays, O3-tot-Thikness and terrestrial UVB 
Looking for further possible connections between changes of Sun activities and terrestrial 
climatic effects one can see correlation between changes of sun controlled cosmic radiation 
and ground near UVB-Radiation. There exists a very good known anti correlative change of 
the thickness of the stratospheric Ozone layer and ground near UVB-Radiation (DWD 
Hohenpeisenberg). The reduction of O3 tot - thickness mostly is seen to be caused by volcano 
emissions of dust, SO2 and NOx and by anthropogenic  Cl, disturbing the Chapman-Cycle.  

But there is an anti cyclic behaviour between O3-tot-thikness and Cosmic Rays..Further more 
there starts the reduction of O3-tot-thickness with the end of 21. sun spot period in correlation 
with the reduction of Cosmic rays too (Fig. 18). That leads to the question for an influence of  

 

 

 

 

 

 

 

 

Figure 18 . Time rows of  Ozone- Layer in comparison with sun spot frequency 

 

the changing sun activity in to the increase of UVB-radiation. The reduction of Neutron-flux 
is the real degree of force of sun activity in direction to the earth (sun wind). The time rows of 
stratospheric O3 - layer in the earth's range between  65°South and 65°North show to be in 
correlation with cosmic radiation (Neutron-Flux). It leads to the supposition, that the  
reduction of the stratospheric O3tot-layer may be caused by influencing the Chapman Cycle 
by increasing solar radiation (protons of the solar wind) as a consequence of increasing sun 
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activity, not only by increasing anthropogenic Cl-Production. It follows, that the increasing 
UVB-Radiation in the last twenty years seems to be naturally caused too. 

 

Sun Emissions of Protons 
To look for further observations to stabilise the sun made climate change during the eighties 
we studied by NASA published satellite measurement values. Fig 19 shows the monthly 
satellite-measured sums of Protons with energies higher than 10 MeV These strong “Sun 
Winds” started with the 22nd Period 1989 with an extremely large sunspot in March and 
continued in October with great solar mass ejections. 

 

 

 

 

 

 

 

 

 

Figure 19. Monthly Solar Proton-Flux in Earth Direction, Sunspot Frequencies, Terrestrial 
Global Rays and ground near Temperature since 1976 

These proton currents produced blackouts at electric power plants in the northern hemisphere 
and disturbed wireless contacts between earth and aeroplanes and satellites, they produced 
auroras seen at the Equator. Such strong solar mass ejections occurred repeatedly during the 
22nd and in the 23rd period until now. The NASA comments this behaviour  “The Sun Goes 
Haywire”. One of the last great sun wind events influencing earth occurred at 15 January 
2005 from a sunspot Nr. NOAA 720. This behaviour of the sun makes the fact plausible that 
terrestrial temperatures remains in tendency at a higher level than before 1988. 

 

Global Temperature and Sunspots 
This work deals with the question of the global warming: The time rows of global 
temperature show two jumps since 1900, no continuous increasing as often postulated: The 
first “Climate-Jump I” happens between approximately 1920 and 1935, the second “Climate 
Jump II” starts about 1987 (Fig. 20). The second jump seems to be mainly caused by special 
solar activities like described in this paper. 
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Figure 20.  Global Temperature, Sunspot Frequencies and  CO2. 

 

Also other observations point to extraterrestrial influences causing climate change: The trend 
of global temperature increases with decreasing length of the basis of sunspot periods 
(K~0,8). Continuous reduction of Be10 and C14 since about 1880 points to decreasing cosmic 
radiation, caused by increasing Sun activity. That leads via Svensmark-effect to reduction of 
cloudiness and increasing global temperature. The increase of CO2 is continuous and shows 
no jump. There is a modulation of the increasing averages of the CO2-concentration of 
Hawaii by the 22nd Sun spot period. The Increase of CO2 concentrations seem to be mainly 
powered by increasing temperature and finally by increasing Sun activity. The main cause of 
the sudden climate change during the eighties was the sudden increasing number of extreme 
height energetic mass ejections of the sun, possibly caused by a close nearby constellation of 
the torques of the Sun and Sun System (Landscheidt Th., 2004). Further studying of these 
phenomena with further measured data may lead also to answer the question, why the global 
warming seems to tend today to lag behind the increase of some greenhouse gases without 
Methan. 

 

CONCLUSION 
 
In the last thirty years the main increase of temperature in Central Europe happened within 
the short period of 4 years between 1987 and 1991. This event was coincidental with 
increasing sun activities, increasing intensities of sun winds and with decreasing cosmic 
radiation (neutron rates) with the consequences of reducing cloudiness, increasing global 
radiation and increasing ground near temperature. It leads to the opinion that Climate Change 
in the past century in Central Europe seems to be mainly Sun made.  
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